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Trending Toward Hierarchical Architectures

Emerging architectures introduce:
I Levels of parallelism.
I Heterogeneity.
I Parallel Branches.
I Complex memory systems.
I FLOPS over Bandwidth.
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Current algorithms and applications do not map well to these new
architectures!
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Algorithms, Abstractions, and Applications

New Algorithms must:

I Utilize very fine-grained parallelism.

I Isolate a large amount of work on
accelerators.

I Minimize communication between host
and accelerators.

I Isolate work on-node.

I Maximize use of SIMD and SIMT
features.

New Applications must:

I Exhibit properties similar to emerging
architecture.

I Achieve performance and portability
across architectures.

I Achieve a significant new physics
simulation capability.

I Provide feedback to architecture
development.

We propose an evolving co-design process for developing applications and
algorithms with these characteristics.
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Evolving Co-Design Process
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Domain Science and Applications

I Multi-Scale physics problems exhibit a hierarchical nature.
I Kinetic plasma simulations are a prime example.
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Explicit Kinetic Simulations

We need algorithms that allow for the isolation of scales at various levels of
parallelism.
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Scale Bridging Algorithms

Particle Methods:
I Good:

I High degree of isolated parallelism.
I Maps well to accelerators.
I Highly scalable.
I Can resolve very small nonlinear

features.
I Bad:

I Frequent global communication
required.

I Small timesteps and fine meshes
required.

Grid Methods:
I Good:

I Resolves large-scale nonlinear
features.

I Can use coarser meshes.
I Larger time steps.

I Bad:
I Does not resolve small nonlinear

effects.
I Does not fit well on accelerators.

Solution: Use High-Order / Low-Order acceleration bridge these two methods.
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Consistent Moment-Based Implicit PIC
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Moment-Based Implicit PIC with subcycling

for t = 0→ tmax do
while resid > tol do // Outer Picard Loop

for all pi,0 ∈ Pt do // Particle Loop
while

∑
∆τν < ∆t do // Subcycle Loop

Interpolate ~Et+1/2,~Bt+1/2 to pi,ν
Estimate ∆τν
Solve equations of motions: pi,ν → pi,ν+1

Tally ~J(pi,ν+1/2)
end while
Tally ρ(pi,t+1), S̄(pi,t+1)

end for
Calculate residual
~Et+1,~Bt+1=LO(~J(pi,t+1/2), ρ(pi,t+1), S̄(pi,t+1))

end while
end for
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Consistent Moment-Based Implicit PIC

Advantages:
I Charge conservation to machine

precision.
I Energy conservation to specified

tolerance.
I Significant amount of work

isolated on node / accelerator.
I Majority of the work maps well to

accelerators.
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Two stream instability on 32 nodes 16 Cores per Node

A very large portion of
the work is isolated in the
particle operations.
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CoCoPIC Framework design

In order to support multiple mini-apps utilizing multiple optimization strategies
we developed a flexible parallel implicit PIC framework called CoCoPIC.

The following design goals were incorporated into the development of
CoCoPIC:

I Support multiple plasma physics problems of varying complexity, 1D1V to
2D3V.

I Support GPU, multi-core, and multi-node systems
I Develop abstraction layers to hide device specific optimizations from the

physics code.
I Support multiple LO solvers, including TRILINOS based solvers1

1M. A. Heroux et. al. An overview of the trilinos project. ACM Trans. Math. Softw.,
31(3):397–423, 2005.
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Abstraction Layers

Science Abstractions accommodate:
I Different PDEs in Low Order

system.
I Different Spatial and Velocity

dimensionalities.
I Different normalization systems.

Hardware Abstractions accommodate:

I Different parallelization
granularities.

I Different intrinsic operations
I Different data management

capabilities
I Fast optimization testing

Proper development of abstraction layers can yield incredibly powerful
code that is flexible, readable and high-performing.
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PDE Abstraction Library
Given two ways to write the following PDE evaluated on a Yee mesh:

dpx

dt
+

dSxxn
dx

+
dSxyn

dy
− q

m
nEx = 0 (1)

Hard-coded discretized form of our PDE:

res_px[i,j] = (px[t+1,i,j] - px[t,i,j])/dt
+ (Sxx[t+1/2,i,j]*n[t+1/2,i,j] - Sxx[t+1/2,i-1,j]*n[t+1/2,i-1,j])/dx
+ 0.25*(Sxy[t+1/2,i,j+1]*n[t+1/2,i,j+1] - Sxy[t+1/2,i,j-1]*n[t+1/2,i,j-1])/dy
+ 0.25*(Sxy[t+1/2,i-1,j+1]*n[t+1/2,i-1,j+1] - Sxy[t+1/2,i-1,j-1]*n[t+1/2,i-1,j-1])/dy
- q/m * Ex[t+1/2,i,j] * 0.5*(n[t+1/2,i,j]+n[t+1/2,i-1,j]) ;

Condensed form achieved through template meta-programming.

res_px(i,j) = (Dt(px) + Dx(Sxx*n) + IntrpX(IntrpY(Dy(Sxy*n)))
- q/m*Ex*IntrpX(n))(t+1/2,i,j);

The advantages of option 2 are as follows:
I Readability
I Type-safe. Each variable has a type based on its position on the mesh.
I Performance.

Code that looks like the math can also be fast!
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Maintain single piece of code for expressing hi-order
physics

I The high order physics does not change from device to device, only
underlying operations and data management strategies.

I GPUs basically want one particle per thread.
I CPUs want many particles per thread with each operation vectorized.

For evaluating c = a + b, where a, b, andc are all arrays. The GPU and CPU
require a slightly different expression:

CPU Expression:

for(i=0;i<n;i+=4)
c[i] = vec_add(a[i], b[i]);

GPU Expression:

i = threadIdx.x
c[i] = a[i] + b[i];

With some use of template meta-programming we can hide both of these
statements behind a statement such as c = a + b.
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Analysis Tools

BYFL a tool developed at LANL by Scott Pakin and Pat McCormick that can
be used to measure various performance aspects of a code2 :

Metric xRAGE CoCoPIC
Ops per load 4.0063 10.9560

Flops per branch 0.7703 2.6791

Ops per branch 6.8952 26.9296

Bytes per flop 20.7993 15.7598

Bytes per op 2.3237 1.5679

Unique bytes per flop 0.1036 0.0001

Unique bytes per op 0.0116 0.0000

Bytes per unique byte 200.6784 144,986.9800

In-Situ Timers Built in high-resolution CPU timers that can be used to profile
the code in-situ.

2S. Pakin. Compiler-based application analysis. Exascale Research Conference, April 2012.
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Optimization Example: 2D3V CPU optimization

Optimization Strategy:
I Identify high runtime cost areas.
I Identify cause of high runtime cost (lots of flops, memory access patterns,

etc.)
I Identify strategies to mitigate the causes of the high runtime costs.

Baseline - Performance results without extensive optimization.
Reduce FLOPs - Consolidates shape function evaluations.
Memory Access Patterns - Store the fields as an array of structures.
Hardware Intrinsics - Include hand vectorized routines.
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Implementation of optimizations
required roughly 2 work days.
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Conclusions

I Quality implementation of hierarchical algorithms (HO-LO) has clearly
paved the way for maximizing on-node flops while minimizing node-to-node
communication on a multi-node, many-core + GPU, architecture

I Readability and Performance win-win through high-level science
abstractions.

I Portability, Readability, and Performance triple-win through hardware
abstractions.

I Achieved 20% - 40% of peak theoretical multi-core performance
I More information in:

J. Payne, D. Knoll, A. McPherson, W. Taitano, L. Chacon, G. Chen, and S. Pakin.
Computational co-design of a multiscale plasma application: A process and initial results. In
28th IEEE International Parallel & Distributed Processing Symposium (IEEE IPDPS 2014),
Phoenix, USA, May 2014. (accepted).
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